Custom Callbacks
info
For PROXY Go Here
Callback Classโ
You can create a custom callback class to precisely log events as they occur in litellm.
import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
#### ASYNC #### - for acompletion/aembeddings
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success")
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Failure")
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
## sync
response = completion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi ๐ - i'm openai"}],
stream=True)
for chunk in response:
continue
## async
import asyncio
def async completion():
response = await acompletion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi ๐ - i'm openai"}],
stream=True)
async for chunk in response:
continue
asyncio.run(completion())
Common Hooksโ
async_log_success_event
- Log successful API callsasync_log_failure_event
- Log failed API callslog_pre_api_call
- Log before API calllog_post_api_call
- Log after API call
Proxy-only hooks (only work with LiteLLM Proxy):
async_post_call_success_hook
- Access user data + modify responsesasync_pre_call_hook
- Modify requests before sending
Callback Functionsโ
If you just want to log on a specific event (e.g. on input) - you can use callback functions.
You can set custom callbacks to trigger for:
litellm.input_callback
- Track inputs/transformed inputs before making the LLM API calllitellm.success_callback
- Track inputs/outputs after making LLM API calllitellm.failure_callback
- Track inputs/outputs + exceptions for litellm calls
Defining a Custom Callback Functionโ
Create a custom callback function that takes specific arguments:
def custom_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
# Your custom code here
print("LITELLM: in custom callback function")
print("kwargs", kwargs)
print("completion_response", completion_response)
print("start_time", start_time)
print("end_time", end_time)
Setting the custom callback functionโ
import litellm
litellm.success_callback = [custom_callback]
Using Your Custom Callback Functionโ
import litellm
from litellm import completion
# Assign the custom callback function
litellm.success_callback = [custom_callback]
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi ๐ - i'm openai"
}
]
)
print(response)
Async Callback Functionsโ
We recommend using the Custom Logger class for async.
from litellm.integrations.custom_logger import CustomLogger
from litellm import acompletion
class MyCustomHandler(CustomLogger):
#### ASYNC ####
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success")
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Failure")
import asyncio
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
def async completion():
response = await acompletion(model="gpt-3.5-turbo", messages=[{ "role": "user", "content": "Hi ๐ - i'm openai"}],
stream=True)
async for chunk in response:
continue
asyncio.run(completion())
Functions
If you just want to pass in an async function for logging.
LiteLLM currently supports just async success callback functions for async completion/embedding calls.
import asyncio, litellm
async def async_test_logging_fn(kwargs, completion_obj, start_time, end_time):
print(f"On Async Success!")
async def test_chat_openai():
try:
# litellm.set_verbose = True
litellm.success_callback = [async_test_logging_fn]
response = await litellm.acompletion(model="gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "Hi ๐ - i'm openai"
}],
stream=True)
async for chunk in response:
continue
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}")
asyncio.run(test_chat_openai())
What's Available in kwargs?โ
The kwargs dictionary contains all the details about your API call:
def custom_callback(kwargs, completion_response, start_time, end_time):
# Access common data
model = kwargs.get("model")
messages = kwargs.get("messages", [])
cost = kwargs.get("response_cost", 0)
cache_hit = kwargs.get("cache_hit", False)
# Access metadata you passed in
metadata = kwargs.get("litellm_params", {}).get("metadata", {})
Key fields in kwargs:
model
- The model namemessages
- Input messagesresponse_cost
- Calculated costcache_hit
- Whether response was cachedlitellm_params.metadata
- Your custom metadata
Practical Examplesโ
Track API Costsโ
def track_cost_callback(kwargs, completion_response, start_time, end_time):
cost = kwargs["response_cost"] # litellm calculates this for you
print(f"Request cost: ${cost}")
litellm.success_callback = [track_cost_callback]
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello"}])
Log Inputs to LLMsโ
def get_transformed_inputs(kwargs):
params_to_model = kwargs["additional_args"]["complete_input_dict"]
print("params to model", params_to_model)
litellm.input_callback = [get_transformed_inputs]
response = completion(model="claude-2", messages=[{"role": "user", "content": "Hello"}])
Send to External Serviceโ
import requests
def send_to_analytics(kwargs, completion_response, start_time, end_time):
data = {
"model": kwargs.get("model"),
"cost": kwargs.get("response_cost", 0),
"duration": (end_time - start_time).total_seconds()
}
requests.post("https://your-analytics.com/api", json=data)
litellm.success_callback = [send_to_analytics]
Common Issuesโ
Callback Not Calledโ
Make sure you:
- Register callbacks correctly:
litellm.callbacks = [MyHandler()]
- Use the right hook names (check spelling)
- Don't use proxy-only hooks in library mode
Performance Issuesโ
- Use async hooks for I/O operations
- Don't block in callback functions
- Handle exceptions properly:
class SafeHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
await external_service(response_obj)
except Exception as e:
print(f"Callback error: {e}") # Log but don't break the flow